Determination of Epithelial Tissue Scattering Coefficient Using Confocal Microscopy

نویسندگان

  • Tom Collier
  • Dizem Arifler
  • Anais Malpica
  • Michele Follen
  • Rebecca Richards-Kortum
چکیده

Most models of light propagation through tissue assume the scattering properties of the various tissue layers are the same. The authors present evidence that the scattering coefficient of normal cervical epithelium is significantly lower than values previously reported for bulk epithelial tissue. They estimated the scattering coefficient of normal and precancerous cervical epithelium using measurements of the reflectance as a function of depth from confocal images. Reflectance measurements were taken from ex vivo cervical biopsies and fit to an exponential function based upon Beer’s law attenuation. The mean scattering coefficients derived were 22 cm 1 for normal tissue and 69 cm 1 for precancerous tissue. These values are significantly lower than previously reported for bulk epithelial tissues and suggest that scattering of bulk tissue is dominated by the stroma. They also suggest that computational models to describe light propagation in epithelial tissue must incorporate different scattering coefficients for the epithelium and stroma. Further, the lower scattering of the epithelium suggests greater probing depths for fiber optic probes used by optical diagnostic devices which measure reflectance and fluorescence in epithelial tissue. The difference in scattering between normal and precancerous tissue is attributed to increased nuclear size, optical density, and chromatin texture. The scattering coefficients measured here are consistent with predictions of numerical solutions to Maxwell’s equations for epithelial cell scattering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy

Background  To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...

متن کامل

Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy.

Most models of light propagation through tissue assume that the scattering properties of various tissue layers are the same. We present evidence that the scattering coefficient of cervical epithelium varies by a factor of 3 within the epithelium owing to variations in nuclear density and to the presence of keratin. We estimated the scattering coefficient from regions of normal and precancerous ...

متن کامل

A liquid optical phantom with tissue-like heterogeneities for confocal microscopy

Phantoms play an important role in the development, standardization, and calibration of biomedical imaging devices in laboratory and clinical settings, serving as standards to assess the performance of such devices. Here we present the design of a liquid optical phantom to facilitate the assessment of optical-sectioning microscopes that are being developed to enable point-of-care pathology. Thi...

متن کامل

Deep tissue fluorescent imaging in scattering specimens using confocal microscopy.

In scattering specimens, multiphoton excitation and nondescanned detection improve imaging depth by a factor of 2 or more over confocal microscopy; however, imaging depth is still limited by scattering. We applied the concept of clearing to deep tissue imaging of highly scattering specimens. Clearing is a remarkably effective approach to improving image quality at depth using either confocal or...

متن کامل

Penetration depth limits of in vivo confocal reflectance imaging.

We present experiments to predict the maximum penetration depth atwhich typical biological structures in amelanotic tissue can bedetected with confocal microscopy. The detected signal is examinedas the signal source strength (index of refraction mismatch), thesource depth, and the medium scattering coefficient are varied. Thedetected background produced by scattering outside the focal volume is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001